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A N I S O T R O P Y  F R O M  S L I P P I N G S  

V. M. Zhigalkin  and B. A. Rychkov UDC 539.37 

The need to complete the theory of slipping with reliable experimental results [2] has recently been acknowledged [1]. 

In this paper, as in [3], we develop a model of a material in which plastic deformation is represented as the result of 

slippings over the area of the principal shear stresses. Specially set up experiments on thin-wailed tubular specimens of 40Kh 

steel provided the means for completely verifying and supplementing the parameters introduced into this model and of checking 

its predictions regarding the nature of the strain anisotropy that occurs in the material. 

1. We will consider the stress-strain state of an element of a solid for fixed directions of the principal axes of the stress 

tensor. This state occurs in experiments on the stretching (or compression) of thin-walled tubes with internal pressure. We will 

denote the axial stress in this specimen by 0.z, the circumferential stress by 0.r and the radial stress by 0.r(0.r --- 0). Any of these 

principal normal stresses can become a maximum depending on the specified load trajectory; then, as is usually done, we will 

assign the subscripts 1, 2, 3 to them, where the following inequalities must be satisfied: 0.1 > 0.2 > 0.3. To this there 

correspond the principal shear stresses: the maximum 7" m = 7"13 = (0.1 - 03)/2 and 7"12 = (0.1 - 0"2)/2, 7"23 = (0"2 - 0.3)/2. 

We used two-, three-, and four-section load trajectories in the space of the principal stresses in the experiment. The 

first section is a proportional load outside the elastic limit for a specified form of stress state. The latter will be characterized 

either by the L o d e -  Naday parameter for the stresses/%, or by the invariant m, which is the ratio of the octahedral shear stress 

r 0 to the maximum stress 7"m (m = r 0 / 7 " m ) .  

The following relation holds: 

m = v ~  + ~ , 2 / 3  (~ /2 /3  ~< m ~ 2 24~-7S). 

In addition, the invari~nt m can be represented in term of the angle of the form of the stress state Xa 

rn = sin ~ + - ~ : r  (0~<g~ ~<~ /3 ) .  

Here the angle Xcr is expressed in the well-known way in terms of the second and third invariants of  the stress deviator. 

We will use the following scheme of the slipping mechanism. For proportional loading, slippings occur in those areas 

of the principal shear stresses in which these stresses reach the values of the shear resistance Sij [4]. The state that occurs will 

be a state of incomplete or complete plasticity [5, 6] depending on whether the condition 7-ij = Sij is satisfied only over the 

area of maximum shear stress or over other extremal areas. These areas will henceforth be called slipping areas and will be 

denoted, like the shear stresses attached to them, by Tij. For proportional loading Tij -- 7-ij. This identity in notation may break 

down under complex loading, since, for convenience in analyzing a succession of slippings, the notation of the slipping areas 

Tij is preserved as it is taken on the first part of the loading trajectory. Thus, for loading in a state of pure shear (/~1 a = 0, 

m = mlx/'2"T3~. Slipping initially occurs on the area T13, denoted by T, i.e. T --- ~'m- For further complex loading the 

maximum shear stress 7-m may "transfer" to the area T12 or T23, and we can then speak of additional loading on these areas 

and of possible unloading over the area T etc. 

2. Slippings which occur over areas of maximum shear stress are the main ones [4]. As was established in [3], the 

resistance to shear from these slippings for the loading considered has the form 

S(/3) = V,(~0, m) + tlJ(r o, m)r(fl) + A(I - cos2fl), A -- const, (2.1) 
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where/3 is the direction of the slipping, measured from the direction of r m, r(5) is the intensity of the main slippings, and ~b 

and ~I' are known functions of these arguments. 

We will assume that the increments of the main strains from the main slippings dFi ~ and the corresponding increments 

of all other possible slippings dFi d are related as follows: 

arr'~ = ( r i i / r , , ) ' a~ ,  arF{ - (r23/r,.)qdl~s, q = const, (2.2) 

where 

= -dl~3. (2.3) 

Summing the components (2.2) and (2.3) and taking into account the condition of incompressibility for purely plastic 

deformation, we obtain the total increments of its components along the principal axes 

{ '] [ '] f'-,,/ < ,  er, = 1 + t ~ )  t'-,) 

(=,=)] ~q Lt ' - ) -  ~ dr?,. 
Summation of the elementary shears over all regions of the main slippings gives 

(2.4) 

# 

t f d,~)cosZaJ:. (2.5) ~--7 
The limits of the fan of slippings +0 at the current instant of time t are found from the condition of continuity of their 

development, which is expressed either by equating the intensity of the slippings to zero within these limits in the case when 
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TABLE 
Number 
of the 
readout 
point 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

9,8t - I  MPa 

42 0 
43 
44 

47 
48 
49 
50 
51 
52 
53 

r z - r !p  

% 

2,5 
5,0 
7,5 
10,0 

0,191 
0,196 
0,205 
0,215 
0,223 

0,100 
0,099 
0,103 
0,105 
0,106 

12,5 0,239 
15,0 0,258 
17,5 0,280 
20,0 0,303 
22,5 0,338 
25,0 0,381 
27,5 0,432 

0,105 
0,104 
0,098 
0,097 
0,096 
0,093 
0,088 

cn 

42,0 
41,8 
41,7 
41,7 
41,9 
42,1 
42,5 
43,0 
43,5 
44,2 
45,0 
45,9 

~12 s23 

9,81- t MPa 

21,00 0 
20,25 1,25 
19,50 2,50 
18,75 3,75 
18,00 5,00 
17,25 6,25 
16,50 7,50 
15,75 8,75 
15,00 10,00 
14,25 11,2.5 
13,50 12,50 
12,75 13,75 

there is a monotonic increase in the fan of slippings, or by the fact that the rate of change of this intensity in the case of partial 

"freezing" of the fan of slippings vanishes (in the directions +0).  The intensity of the slippings is found from the condition 

for the resistance to shear (2.1) to be equal to the corresponding component of the shear stress r(/3) (r(3) = rmCOS23) in the 

region where the slippings occur; outside this region S(3) > r(fl). 

Hence, by specifying the trajectory of the loadings we can calculate the increments of the components of the plastic- 

deformation tensor from (2.4) and (2.5). As a result, we obtain relations similar to those in flow theory, which can only be 

integrated in the case of proportional loading. The elastic constituents of the deformation components are found from Hooke's 

law. 

3. We took the following in the calculations: 

(I + 3re)r,, 
W(r0, m) = p + 3ml)rt l , p ,  c = const; (3.1) 

(i + 3ml)r / -- a~ o 
t[.'(ro, m )  = I .r ( k  - a ) m  , a = k - a l /  ra ,  k, a 1 = cons t  (3.2) 

(z l and m I are the yield point* and the value of the invariant m for pure shear, respectively). 

The constant A in (2.1) for all the materials considered can be expressed [4] in the same way: A = 4z l. A further four 

constants of the material occur in (3.1) and (3.2), namely, p, c, k, and a t. The first pair (p and c) is found when approximating 

the hardening diagram by theoretical relations for pure shear (or for uniaxial stretching), since the function ~(z 0, m) plays the 

role of the secant modulus, and these diagrams are taken to be the listed characteristics of the material. Some information on 

the parameters k and a t are given below. Finally, the constant q in (2.4), like A, is taken to be the same for all materials: for 

q = 0.75 there is a difference between the L o d e - N a d a y  parameters for stresses and deformation observed in experiments for 

proportional loading. 

The yield condition for an initially isotropic material follows from the condition for the resistance to shear to be equal 

to the maximum shear stress when r(3) = +0,  i.e. from the equation 

~ ( r  o, m) = L," 

It follows from the last expression, taking (3.2) into account, that there is a linear relationship between the maximum shear 

stress and the octahedral shear stress (which does not depend on the parameter a 1) 

r,, = (1 + 3 m l ) r  t - k'r o. (3.3) 

when k = 0 we obtain the Trask-Saint-Venant  yield criterion and as k --, oo we obtain the G u b e r - M i s e s  criterion. We took 

a value of k intermediate between the ones indicated (k = 3) in the calculations since it corresponds better to experimental data. 

*We mean here by the field point, as usual in theoretical constructions, the point where the elastoplastic part of the hardening 

diagram joins the linear elastic part, defined, for example, by the Lode extrapolation method [7]. 
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Relation (3.3) reflects the following. At the instant when plastic deformation occurs the value of the maximum shear 

stress for pure shear is greater than its similar value for uniaxial stretching, while the octahedral shear stress, on the other hand, 

is less in the first case than in the second. If we assume this relationship to be preserved in the case of plastic deformation (for 

proportional loading) this means that the function (r  0, m) in (2.1) must be a decreasing function as the stress level increases, 

which will characterize the quantity r 0. The dependence of the deformation on the stress is as follows: for the same value of 

r m the shear Fma x must be greater for uniaxial stretching than for pure shear. It is precisely this form of strengthening that is 

observed in the material considered. This is ensured in the model if the constant a! (see Eq. (3.2)) is positive. Its value can 

be found by taking into account the following property of the slipping scheme assumed. 

Additional increments (2.2) of the components of plastic deformation arise from slippings over the areas TI2 and T23. 

It was established experimentally in [8] that the relations Fij = Fij(Tij) (i ;~ j, i. j = 1. 2 .3 )  are invariant. This means that 

the resistance to shear on any of the slipping areas Tij can be represented by (2.1), which operates on the slipping intensity 

rij over the given area. As a result we can formulate the condition for slipping to occur and develop over any of the areas Tij 

when there are basic slippings over the other areas. Using this approach the relation between the increments of the deformation 

from the main and additional slippings of the form (2.2) must be regarded as an approximation of the additional increments 

dl"i d, which, in principle, can be calculated from the known resistance to shear. However, it is more convenient to use relation 

(2.2) since one then ensures, as already noted, the necessary relation between the Lode - N a d a y  parameters for the stresses and 

strains. 

For uniaxial stretching the main slippings are over the areas T and TI2 (they are equally justified in this case). As the 

stress level increases or when there is a change in the form of the stress state, slippings may also occur over the area T23. At 

this instant we have 

0 
~p(r o, m) = r23, (3.4) 

where the stress r23 ~ must be regarded as the yield point on the given slipping area for a given level and form of the stressed 

state. Relation (3.4) also enables one to determine the constant a i. 

Thus, to determine a 1 the following loading program must be carried out: after uniaxial stretching, when r m = r12 

> r l and r23 = 0 (but the level of  stresses is such that ~b(r o, m) > 0), one must achieve changes of the form of the stressed 

state for which "i" m = 0rm/Ot > 0, ")'12 < 0, ~'23 > 0. Slippings over the area T12 then cease, but will continue over the area 

T, and they will occur over the area T23 when condition (3.4) is satisfied. One can determine this instant experimentally by 

detecting the presence of  an increment in the component 1" 2, since up to this instant a fixed value of  the component F 2 (acquired 

in preliminary stretching) will correspond to pure shear strain due to slipping only over the area T. 

4. In addition to this loading trajectory in an experiment to determine the initial properties of the material and the 

parameters of  the model, one must also carry out five forms of proportional loading: 1) uniaxial stretching (a z > 0, a~o = 0, 

/~a = - 1 ) ;  2) stretching in a circumferential direction (% > 0, a z = 0, ~cr = - 1 ) ;  3) compression when a z = ar I t a =  1; 

4) pure shear, when a z = 2a~, or % = 2a z,/~cr = 0; 5) pure shear when a z = - % , / ~ c ,  = 0. 

An experiment was carried out on thin-walled tubular specimens made of 40Kh steel. 
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Figure 1 shows a strengthening diagram of the material under test for proportional loading and calculated graphs 

obtained using the model for the following values of the material parameters: Young's modulus E = 21,500 x 9.81-1 MPa, 

Poisson's ratio v = 0.32, r l = 20 x 9.81-1 MPa, a 1 = 0.15, p = 1225 • 9 .81-1  MPa, and c = - 1 . 5 .  As for 12KhN3A 

steel [3], we assume k = 3, A = 4 r  t and q = 0.75. The results of calculations are represented by the curves and the results 

of the experiment are represented by the points. To make comparison easier, the tension and compression diagrams are plotted 

in coordinates of the stress intensity a i against the strain intensity e i. The small circles represent uniaxial stretching of specimen 

No. 4 - 0 2 8  (a z > 0, % = 0), the dark circles are for stretching in a circumferential direction of  specimen No. 4 - 1 1 8  (% 

> 0, a z = 0), and the right triangles are for equal biaxial stretching specimen No. 4 - 0 4 3  (a z = % , / ~ a  = 1). The diagrams 

of pure shear are plotted in coordinates of the maximum shear stress r m against the maximum shear 7max(Tmax = 7max e + 

r'max, 7max e is the elastic component of the shear strain, found using Hooke's law). The test made on specimen No. 4 - 1 1 5  

correspond to this state with a z = 2a,, (the stars) and specimen No. 4 - 0 4 1  for % = - a  z (the dark triangles). In addition, 

on the r m - 7max diagram we show for comparison how the maximum shear develops in the case of uniaxial stretching (the 

light circles, specimenNo.  4 -028 ) .  

On the whole, the data on proportional loading confirms the fact that 40Kh steel in the test state is an initially isotropic 

material, having similar resistance to tension and compression and satisfying the yield criterion (3.3). The strengthening 

diagrams shown in Fig. 1 were taken as the nominal diagrams for this material for these forms of stressed state. 

5. Figure 2 shows test data on loading along a two-section trajectory of specimen No. 4 - 0 7 8  (the points) which enable 

us to determine the parameter a 1 (Eq. (3.2), the curves). 

The first part of the loading consisted of uniaxial stretching up to a stress of a z = 42 x 9.81 - 1 MPa. Over this section 

of proportional loading the reduction coefficient k r [3] of the strengthening diagram of the material of this specimen to the 

nominal diagram was determined; it turned out that k r equals 1.09 (the values of the stresses that are fixed during the test used 

to calculate the values of  the plastic deformation components must be multiplied by this coefficient). 

We then made a break in the loading trajectory after which, for a constant ratio of  the increments of the stresses 

A % / A a  z = 2.5, we have "i'm > 0, "J'12 < 0 ,  7"23 > 0. The experimental values of the stresses, the components of the strain 

(their plastic components), and also a i and rij at several points are given in the table. Comparison of  the values of s and I'~, 

shows that after the break in the trajectory the component of the strain Fie = F z increases, while the component 1' 2 = I 'r  

undergoes practically no increment up to the 15-th point of readout, beginning from which 1' 2 also increases. At this instant, 
o = 6.81 x 9 .81-1  MPa. as was shown above, condition (3.4) must be satisfied, which gives a 1 = 0.15 for r23 

We will note one more feature of the behavior of a material outside the elastic limit, revealed in this experiment. After 

a break in the loading trajectory on a certain part of its second section, the stress intensity actually remains constant, but 

nevertheless an increment in the plastic deformation is recorded (s = s > 0, see Table 1). This result agrees with the 

observations in [9] and elsewhere, which detected an increment in the plastic deformation for loadings when the value of the 

second invariant of the stress deviator remains unchanged, and only the form of the stressed state varies. 

Experimental data also confirm that, beginning from the 15th readout point (see Table 1) of  the measured quantities, 

there is a positive increment in the deformation component 1" 2 = l ' ,p. This indicates that slipping over the area T23 is 

occurring. 
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According to (2.4), the increment in the shear dF 2 > 0, when there are no slippings over the areas TI2 or they develop 

with lesser intensity than over the areas T23, while the shear stresses 7-12 and 7"23 are related by the inequality 7"23 > ~'I2" 

However, the latter is only satisfied after the 19-th point. 'This raises doubts about the correctness of (2.2) between the 

increments of the deformation from the main and additional slippings in the place of complex loading. They can be refined as 

follows. 

Using the assumption that, on each area of slipping Tij the resistance to shear has the form (2. I), we can determine 

the apertures 0ij of the fans of  slippings on these areas at the current instant of time t. As follows from the above, at the instant 

t, when the break in the loading trajectory occurs 013 = 012 = 0.  (023 = 0). When t > t.,  it turns out that 012 = 0 and the 
increment in the slipping intensity rt2 = 0 up to the 15-th point of readout, and then s > 0, but the boundaries of the fan 

of slippings over the given area is less than at the instant t,. This suggests the following conclusion: the contribution to 

deformation from these additional slippings is less when the fan of slippings is partially "frozen." 

We will put 

r u -- ~p(r0, m) = R u. 

The instant when slippings over the area TI2 are resumed is found from the condition 

Rtz/IV(ro,  m) = Rl~ /q l*( r  0, m) 

(the asterisks denote quantities at the instant t,). 

The fan of  slippings at the current instant of time will encompass the whole fan at the preceding instants when the 

following equation is satisfied: 

Rul , , , .  = R~2. 

An analysis of these experiments enabled us to obtain an approximation of the relationship between the increments of the shears 

and the main and additional slippings 

d dr, = at7 = k,,(,j,.,),,a1,, 
where 

k l l  = 1 - (R*lz - -  R u ) I R  u for Rtl~< R~2, kil = 1 for R t2>  R~2. 

the coefficient k23 is found in the same way as the coefficient k12. 

Hence, a simple method has been developed for determining the parameters of the material used in the slipping model. 

Theoretical curves have been drawn for different complex loadings. Below we will present a very different testing program. 

6. In Fig. 3 the loading trajectory is shown in T - t r  2' coordinates (tr 2' = T23 - T12 = T/z~). Here the light circles 
represent the complex loading of  specimen No. 4 - 0 1 7  (k/ = 1.09), and the dark circles represent proportional loading of 

specimen No. 4 - 0 6 9  (k/ = 1.09). The final values of the stresses in both cases were the same and, as can be seen from the 

experimental diagrams, the final values of the deformation components were also the same. Consequently, the influence of the 
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break in the loading trajectory in this case attenuates rapidly. This always occurs when all three principal shear stresses increase 

during loading and give a monotonic increase in the slipping fans. 

The monotonic development of slippings over the area T (0 > 0) imposes a limitation on the increments of the principal 

stresses 

d a  I 2(2a2  - a l ) ( r , ,  ' + 4 r t )  

d e  2 19mr 0 - 2(2a I - a2)lr,, , - I3(5 + 3mx)r 0 + 8(2a I - a~)lr t" 

We similarly also checked the condition for the increase in the slipping fans to be monotonic over the other areas (T12 and 

T23). 
As we know, small sign-varying deviations (with respect to the parameter O,~) from proportional loading for any form 

of stress state lead to small deviations in the deformation corresponding to the g i v e n / ~ .  This was confirmed from tests on 

specimen No. 4 - 0 7 0  (the light circles in Fig. 4, k l = 1.09). For comparison Fig. 4 also shows a diagram of  e z = ez(a z) for 

pure shear (the continuous curve, specimen No. 4 -115 ) .  

The only difference in this experiment is that on changing from a state of uniaxial tension to a state of pure shear, the 

loading history was found to have a considerable influence (Fig. 4, the dark circles - specimen No. 4 - 1 0 8 ,  k 1 = 1.05). 

According to the above model, after the break in the loading trajectory in this case, slippings over the area T23 occur when 

the local yield point r23 ~ satisfying condition (3.4) is reached. In this case r230 --- 3.5 x 9 .81-1  MPa. This "lag" in the 

slipping over the area T23 behind the development of slippings over the other areas (T and T12 ) leads to a constant increase 

(in modulus) of the deformation I" 2 = l',p, although less intense for uniaxial tension, but is maintained until a state of pure shear 

is achieved. 

A somewhat different pattern occurs in the change in deformations when the opposite transition is made, namely, from 

pure shear to uniaxial stretching (Fig. 4, specimen No. 4 - 1 0 0  - the triangles, k l = 1.02). The difference between the 

deformation components in a small neighborhood of the yield point when fza = - 1 and ~a = 0 is small. It is practically erased 

as the level of stresses increases for the loading trajectory indicated for specimen No. 4 - 1 0 0  a s /% --, - 1. This occurs by 

virtue of the predominance of slippings over the areas T and T12. 

The loading trajectory of specimen No. 4 - 1 0 0  contains a third section: after reaching a state of uniaxial stretching 

the reverse transition occurred from gcr = - 1 to/% = 0 (however the state ~a = 0 was not reached: due to the presence of 

a fairly large overall deformation of the specimen the experiment was discontinued). A characteristic feature is that at the 

beginning of the third stage of deformation the hardening of the material increases sharply, approaching the elastic deformation 

(see Fig. 4), and the hardening diagram a z = Oz(ez) then becomes similar to the diagram for pure shear (when a z = 2G,). This 

can be explained by the fact that when the stress state changes the value of the invariant m decreases, the function ff(r 0, m) 

on a certain part of the third section of the loading trajectory remains constant, while the function ~b(r O, m) decreases much 

less than in the preceding stages. As a result, the slipping intensity over this part increases only slightly. Its increment begins 

to increase when the function tk(r 0, m) once again decreases as the stress level increases. 

A change in the deformations and the nature of the hardening, similar to that described for specimen No. 4 - 1 0 0 ,  was 

also observed in the case of a transition from pure shear to uniaxial tension for constant maximum shear stress (Fig. 5, 

specimen No. 4 - 1 3 ,  (the light circles, k l = 1.05). These experimental results reinforced the conclusion that the function ~(r  0' 

m) plays a considerable role in the resistance to shear of the form (2.1). 

An increment in the plastic deformation in the case of a transition f r o m / ~  = 0 to/~cr = - 1 also occurs when there 

is some reduction in the maximum shear stress due to a reduction in the intensity of the stresses a i - the "dividing duck" on 

the a i = o'i(8i) diagram. This was observed in tests on specimen No. 4 - 1 3 3  (Fig. 5, the dark circles, k 1 = 1.05). An analysis 

of the experimental data showed that in this case the unloading on the areas T12, for which, at the end of the second loading 

section, zXF z -~ 0.1% and AP~, --- - 0 . 1 % ,  i.e. APt = -AI"  2 and, consequently, AI" 3 = 0. In other words, for loading along 

the second section of the trajectory, plastic deformation is due solely to slippings over the area TI2 when they are not present 

("frozen") over the other two areas. This also follows from the model representations and was used in the calculation. 

Hence, the model of a material based on representations of the principal slipping areas is completely justified. The 

variety of complex-loading effects considered reveal quite clearly the "switching in" and "switching out" of these areas for 

different changes in the stress states. The resistance to shear (slipping), taken as the main strength characteristic of the material 

for plastic deformation, enables one to determine the deformation anisotropy that occurs quite reliably. 
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